Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{1,4-Bis[3-(3-methoxy-2-oxidobenzylideneamino)propyl]piperazine}iron(III) tetrafluoridoborate

Ray J. Butcher,^a* Mohamad Pourian^a and Jerry P. Jasinski^b

^aDepartment of Chemistry, Howard University, Washington, DC 20059, USA, and ^bDepartment of Chemistry, Keene State University, Keene, New Hampshire, USA Correspondence e-mail: rbutcher99@yahoo.com

Received 8 June 2007; accepted 10 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.053; wR factor = 0.144; data-to-parameter ratio = 12.4.

The title compound, $[Fe(C_{26}H_{34}N_4O_4)]BF_4$, shows a very distorted octahedral geometry about the Fe atom of the cation. This is due to the small bite angle of the piperazine ring, which adopts a boat conformation. The structure also displays $C-H\cdots$ F hydrogen bonding. Disorder with site occupancies of 0.53 (2) and 0.47 (2) is found for three of the tetrafluoridoborate F atoms.

Related literature

For related literature, see: Das Sarma & Bailar (1955); Dwyer & Lions (1947); Sinn *et al.* (1978); Yisgedu *et al.* (2007).

Experimental

Crystal data

 $[Fe(C_{26}H_{34}N_4O_4)]BF_4$ $M_r = 609.23$ Monoclinic, $P2_1/c$ a = 18.809 (4) Å b = 10.801 (2) Å c = 13.559 (3) Å $\beta = 92.89$ (3)° $V = 2751.1 (10) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.62 \text{ mm}^{-1}$ T = 293 (2) K $0.48 \times 0.34 \times 0.28 \text{ mm}$ $R_{\rm int} = 0.050$

2835 reflections with $I > 2\sigma(I)$

3 standard reflections

every 97 reflections

intensity decay: none

Data collection

Bruker P4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.767, T_{\max} = 0.875$ 5070 measured reflections 4843 independent reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.053 & 19 \text{ restraints} \\ wR(F^2) &= 0.144 & H\text{-atom parameters constrained} \\ S &= 1.02 & \Delta\rho_{\text{max}} &= 0.37 \text{ e} \text{ Å}^{-3} \\ 4843 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.35 \text{ e} \text{ Å}^{-3} \\ 392 \text{ parameters} & \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Fe-O1A	1.887 (3)	Fe-N1A	2.172 (4)
Fe-O1B	1.908 (3)	Fe-N2B	2.209 (4)
Fe-N1B	2.166 (4)	Fe-N2A	2.218 (4)
O1A - Fe - O1B	127.67 (14)	N1B-Fe-N2B	80.13 (15)
O1A - Fe - N1B	85.93 (14)	N1A - Fe - N2B	121.53 (14)
O1B - Fe - N1B	83.57 (14)	O1A - Fe - N2A	138.21 (14)
O1A - Fe - N1A	83.83 (13)	O1B - Fe - N2A	89.52 (14)
O1B - Fe - N1A	85.37 (14)	N1B - Fe - N2A	120.61 (15)
N1B - Fe - N1A	155.69 (14)	N1A - Fe - N2A	80.78 (14)
O1A - Fe - N2B	88.88 (14)	N2B - Fe - N2A	67.37 (15)
O1B - Fe - N2B	138.58 (13)		~ /

Table 2			
Hydrogen-bond	geometry	(Å,	°).

- ..

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9A - H9AA \cdots F4^{i}$	0.97	2.51	3.464 (14)	170
$C9A - H9AA \cdots F2A^{i}$	0.97	2.54	3.442 (14)	155
$C12A - H12B \cdot \cdot \cdot F4^{i}$	0.97	2.46	3.275 (11)	141
$C12A - H12B \cdot \cdot \cdot F2A^{i}$	0.97	2.30	3.252 (10)	166
$C12B - H12D \cdot \cdot \cdot F3^{ii}$	0.97	2.35	3.279 (8)	160
$C9B - H9BB \cdots F3A^{ii}$	0.97	2.21	3.119 (9)	155

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2037).

References

- Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Das Sarma, B. & Bailar, J. C. Jr (1955). J. Am. Chem. Soc. 77, 5476–5480.Dwyer, F. P. J. & Lions, F. (1947). J. Am. Chem. Soc. 69, 2917–2918.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sinn, E., Sim, G., Dose, E. V., Tweedle, M. F. & Wilson, L. J. (1978). J. Am. Chem. Soc. 100, 3375–3390.
- Yisgedu, T. B., Tesema, Y. T., Gultneh, Y. & Butcher, R. J. (2007). J. Chem. Crystallogr. In the press.

Acta Cryst. (2007). E63, m1913-m1914 [doi:10.1107/S1600536807028413]

{1,4-Bis[3-(3-methoxy-2-oxidobenzylideneamino)propyl]piperazine}iron(III) tetrafluoridoborate

R. J. Butcher, M. Pourian and J. P. Jasinski

Comment

Metal complexes of hexadentate ligands have fascinated inorganic chemists since their first report in 1947 (Dwyer & Lions, 1947). The first such report of a Fe complex of a linear FeN₄O₂ ligand (*i.e.* where the donor atoms are linked in a linear chain) derived from the Schiff base condensation of salicylaldehyde and triethylenetetraamine was in 1955 (Das Sarma & Bailar, 1955). However, this interest lapsed for several years until the discovery that some of these complexes exhibited spin-crossover magnetic behavior (Sinn *et al.*, 1978). While there have been numerous reports of complexes with a FeN₄O₂ chromophore based on Schiff base condensations of tetramines with derivatives of salicylaldehyde, there have been no reports of such complexes based on the tetramine, bis(3-aminopropyl)piperazine.

The title compound, bis(2-hydroxy-3-methoxybenzyl)-3-aminopropylpiperazineiron(III) tetrafluoroborate (I), resulted from mixing iron(II) tetrafluoroborate with the product resulting from the Schiff base condensation of bis(3-aminopropyl)piperazine with 3-methoxysalicylaldehyde. The cation contains a six-coordinate FeN₄O₂ chromophore exhibiting markedly distorted octahedral geometry. This distortion is most noticeable in the fact that the largest *trans* angle is only 155.73 (14)°. The main factor in this unusual geometry is the small bite angle subtended by the central piperazine ring where the distance between the two N's is only 2.454 (5) Å. The piperazine ring has adopted a chair conformation so that both N donors can coordinate to the Fe. There are also weak C—H…F interactions between the BF₄ anion and the cation.

Experimental

To 4.0 g (20 mmol) of bis(3-aminopropyl)piperazine in 15 ml of ethanol was added drop-wise 6.0 g (40 mmol) of 3-methoxysalicylaldehyde in 10 ml of ethanol. The deep yellow solution was left to stir for half an hour and a crystalline product resulted (H₂L). To 0.85 g of H₂L dissolved in 10.0 ml of methanol was added 0.58 g of Fe(BF₄)₂.xH₂O. The solution became violet and a red-purple solid precipitated. This was stirred overnight, the solid filtered, washed with methanol and dried to give 1.65 g of a red powder. Crystallization was effected by slow evaporation of a DMF solution of the complex.

Refinement

The structure contains a disordered BF₄ anion with one unique F and the remaining three F atoms being disordered over two positions with multiplicities of 0.53 (2) and 0.47 (2). These were refined anisotropically in idealized geometry with the group B—F distances restrained. The H atoms were idealized with C—H distances of 0.93 (aromatic C—H), 0.96 (CH₃), and 0.97 (CH₂) Å and $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 $U_{eq}(C)$ for the CH₃ protons).

Figures

Fig. 1. The cation and anion with numbering scheme used. The disorder in the BF_4 anion is shown. Ellipsoids are drawn at the 20% probabilty level.

Fig. 2. The packing arrangement viewed down the *b* axis showing the strongest C—H…F interactions. Only the major component for the disordered BF_4 anion is shown.

{1,4-Bis[3-(3-methoxy-2-oxidobenzylideneamino)propyl]piperazine}iron(III) tetrafluoridoborate

Crystal data	
$[Fe(C_{26}H_{34}N_4O_4)]BF_4$	$F_{000} = 1268$
$M_r = 609.23$	$D_{\rm x} = 1.471 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
a = 18.809 (4) Å	Cell parameters from 45 reflections
b = 10.801 (2) Å	$\theta = 3.1 - 28.5^{\circ}$
c = 13.559 (3) Å	$\mu = 0.62 \text{ mm}^{-1}$
$\beta = 92.89 \ (3)^{\circ}$	T = 293 (2) K
$V = 2751.1 (10) \text{ Å}^3$	Prism, black
Z = 4	$0.48\times0.34\times0.28\ mm$
Data collection	
Bruker P4 diffractometer	$R_{\rm int} = 0.050$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.1^{\circ}$
T = 293(2) K	$h = -22 \longrightarrow 22$
ω scans	$k = -12 \rightarrow 0$
Absorption correction: empirical (using intensity measurements) via ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 16$
$T_{\min} = 0.767, T_{\max} = 0.875$	3 standard reflections
5070 measured reflections	every 97 reflections
4843 independent reflections	intensity decay: none
2835 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.144$	$w = 1/[\sigma^2(F_o^2) + (0.0526P)^2 + 0.7519P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.001$
4843 reflections	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
392 parameters	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
19 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe	0.75426 (3)	0.23350 (6)	0.54586 (5)	0.0410 (2)	
F1	0.2266 (2)	0.1808 (4)	0.7165 (3)	0.1343 (17)	
F2	0.2255 (7)	0.2224 (13)	0.5597 (6)	0.155 (7)	0.524 (17)
F3	0.2569 (9)	0.3678 (5)	0.6634 (7)	0.163 (9)	0.524 (17)
F4	0.3229 (4)	0.2095 (8)	0.6468 (11)	0.140 (7)	0.524 (17)
F2A	0.2684 (10)	0.2029 (8)	0.5647 (6)	0.150 (10)	0.476 (17)
F3A	0.2095 (6)	0.3473 (10)	0.6327 (11)	0.135 (7)	0.476 (17)
F4A	0.3131 (6)	0.3034 (17)	0.6905 (10)	0.286 (16)	0.476 (17)
O1A	0.84521 (15)	0.1910 (3)	0.6005 (2)	0.0513 (8)	
O3A	0.98485 (17)	0.1991 (4)	0.6097 (3)	0.0761 (11)	
O1B	0.67485 (16)	0.2943 (3)	0.6135 (2)	0.0519 (8)	
O3B	0.5410 (2)	0.2911 (5)	0.6538 (3)	0.0848 (12)	
N1A	0.72422 (19)	0.0531 (3)	0.6011 (3)	0.0455 (9)	
N2A	0.6808 (2)	0.1742 (4)	0.4217 (3)	0.0530 (10)	
N1B	0.7902 (2)	0.4237 (4)	0.5574 (3)	0.0537 (10)	
N2B	0.8012 (2)	0.2548 (4)	0.4007 (3)	0.0521 (10)	
C1A	0.8439 (2)	-0.0262 (4)	0.6336 (3)	0.0472 (11)	

C2A	0.8795 (2)	0.0860 (4)	0.6198 (3)	0.0468 (11)
C3A	0.9550 (3)	0.0874 (5)	0.6274 (4)	0.0581 (13)
C31A	1.0605 (3)	0.2023 (6)	0.6043 (5)	0.094 (2)
H31D	1.0756	0.2857	0.5929	0.141*
H31E	1.0744	0.1503	0.5511	0.141*
H31F	1.0824	0.1728	0.6654	0.141*
C4A	0.9916 (3)	-0.0192 (6)	0.6512 (4)	0.0750 (17)
H4AA	1.0410	-0.0182	0.6564	0.090*
C5A	0.9553 (3)	-0.1283 (6)	0.6675 (5)	0.088 (2)
H5AA	0.9807	-0.1996	0.6846	0.105*
C6A	0.8842 (3)	-0.1322 (5)	0.6591 (4)	0.0735 (16)
H6AA	0.8610	-0.2065	0.6703	0.088*
C7A	0.7680 (2)	-0.0325 (4)	0.6278 (3)	0.0491 (12)
H7AA	0.7481	-0.1076	0.6455	0.059*
C8A	0.6483 (3)	0.0259 (5)	0.6075 (4)	0.0596 (14)
H8AA	0.6262	0.0919	0.6437	0.071*
H8AB	0.6430	-0.0503	0.6443	0.071*
C9A	0.6100 (3)	0.0128 (5)	0.5074 (4)	0.0708 (16)
Н9АА	0.6322	-0.0536	0.4719	0.085*
H9AB	0.5611	-0.0115	0.5170	0.085*
C10A	0.6092 (3)	0.1273 (5)	0.4442 (4)	0.0702 (16)
H10A	0.5828	0.1097	0.3825	0.084*
H10B	0.5840	0.1922	0.4775	0.084*
C11A	0.6751 (3)	0.2905 (5)	0.3651 (4)	0.0645 (15)
H11A	0.6540	0.3545	0.4043	0.077*
H11B	0.6451	0.2784	0.3055	0.077*
C12A	0.7203 (3)	0.0841 (5)	0.3636 (4)	0.0644 (15)
H12A	0.7001	0.0804	0.2964	0.077*
H12B	0.7174	0.0022	0.3926	0.077*
C1B	0.6745 (3)	0.5121 (5)	0.5857 (4)	0.0578 (14)
C2B	0.6411 (3)	0.4020 (5)	0.6086 (3)	0.0515 (12)
C3B	0.5686 (3)	0.4036 (6)	0.6302 (4)	0.0667 (15)
C31B	0.4673 (3)	0.2838 (8)	0.6710 (5)	0.110 (3)
H31A	0.4540	0.1987	0.6786	0.166*
H31B	0.4403	0.3192	0.6160	0.166*
H31C	0.4578	0.3287	0.7301	0.166*
C4B	0.5312 (4)	0.5146 (7)	0.6261 (4)	0.089 (2)
H4BA	0.4832	0.5158	0.6398	0.107*
C5B	0.5649 (4)	0.6229(7)	0.6019 (5)	0.096 (2)
H5BA	0.5392	0.6965	0.5982	0.115*
C6B	0.6355 (4)	0.6234 (6)	0.5835 (4)	0.0801 (18)
H6BA	0.6579	0.6976	0.5693	0.096*
C7B	0.7493 (3)	0.5168 (5)	0.5694 (4)	0.0623 (15)
H7BA	0.7700	0.5949	0.5674	0.075*
C8B	0.8657 (3)	0.4485 (5)	0.5431 (5)	0.0720 (16)
H8BA	0.8944	0.3938	0.5855	0.086*
H8BB	0.8765	0.5329	0.5630	0.086*
C9B	0.8860 (3)	0.4308 (5)	0.4384 (5)	0.0782 (17)
H9BA	0.9359	0.4522	0.4343	0.094*

H9BB	0.8587	0.4884	0.3967	0.094*
C10B	0.8747 (3)	0.3013 (5)	0.3972 (4)	0.0702 (16)
H10C	0.8883	0.3005	0.3291	0.084*
H10D	0.9062	0.2449	0.4340	0.084*
C11B	0.7971 (3)	0.1263 (5)	0.3642 (4)	0.0606 (14)
H11C	0.8266	0.0729	0.4068	0.073*
H11D	0.8142	0.1220	0.2980	0.073*
C12B	0.7496 (3)	0.3288 (5)	0.3385 (4)	0.0646 (15)
H12C	0.7562	0.3131	0.2691	0.078*
H12D	0.7568	0.4165	0.3510	0.078*
В	0.2557 (3)	0.2526 (5)	0.6480 (4)	0.0686 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe	0.0385 (3)	0.0446 (4)	0.0395 (3)	0.0059 (3)	-0.0019 (2)	-0.0004 (3)
F1	0.174 (5)	0.114 (3)	0.118 (3)	0.046 (3)	0.038 (3)	0.024 (3)
F2	0.161 (11)	0.201 (17)	0.097 (8)	-0.024 (10)	-0.040 (7)	0.008 (8)
F3	0.36 (3)	0.044 (5)	0.079 (6)	0.052 (9)	-0.016 (12)	-0.017 (4)
F4	0.063 (6)	0.096 (7)	0.26 (2)	-0.002 (4)	0.031 (7)	0.004 (8)
F2A	0.34 (3)	0.045 (6)	0.064 (7)	0.048 (10)	0.025 (10)	-0.016 (4)
F3A	0.120 (10)	0.113 (10)	0.173 (15)	0.054 (7)	0.019 (8)	0.049 (10)
F4A	0.068 (9)	0.56 (5)	0.221 (16)	-0.011 (16)	-0.022 (9)	-0.16 (2)
O1A	0.0378 (17)	0.0477 (19)	0.067 (2)	0.0017 (15)	-0.0096 (15)	0.0077 (16)
O3A	0.038 (2)	0.080 (3)	0.109 (3)	-0.0077 (18)	-0.0039 (19)	-0.001 (2)
O1B	0.0497 (19)	0.054 (2)	0.0520 (19)	0.0101 (16)	0.0054 (15)	0.0015 (15)
O3B	0.051 (2)	0.121 (4)	0.083 (3)	0.021 (2)	0.014 (2)	0.007 (3)
N1A	0.040 (2)	0.050 (2)	0.047 (2)	0.0032 (18)	-0.0024 (18)	0.0022 (19)
N2A	0.057 (3)	0.058 (3)	0.043 (2)	0.016 (2)	-0.0102 (19)	-0.005 (2)
N1B	0.057 (3)	0.045 (2)	0.059 (3)	0.004 (2)	0.000 (2)	-0.001 (2)
N2B	0.059 (2)	0.051 (2)	0.047 (2)	0.018 (2)	0.0114 (18)	0.005 (2)
C1A	0.042 (3)	0.053 (3)	0.047 (3)	0.010 (2)	0.006 (2)	0.010 (2)
C2A	0.043 (3)	0.059 (3)	0.039 (3)	0.005 (2)	0.000 (2)	0.003 (2)
C3A	0.042 (3)	0.075 (4)	0.057 (3)	0.005 (3)	0.001 (2)	0.007 (3)
C31A	0.047 (3)	0.115 (5)	0.119 (5)	-0.013 (3)	0.000 (3)	-0.010 (4)
C4A	0.040 (3)	0.106 (5)	0.079 (4)	0.023 (3)	0.006 (3)	0.024 (4)
C5A	0.069 (4)	0.085 (5)	0.110 (5)	0.035 (4)	0.020 (4)	0.039 (4)
C6A	0.061 (4)	0.067 (4)	0.095 (4)	0.018 (3)	0.019 (3)	0.021 (3)
C7A	0.051 (3)	0.048 (3)	0.049 (3)	-0.001 (2)	0.003 (2)	0.005 (2)
C8A	0.044 (3)	0.062 (3)	0.073 (4)	-0.008 (2)	0.004 (3)	0.005 (3)
C9A	0.045 (3)	0.076 (4)	0.090 (4)	-0.013 (3)	-0.007 (3)	-0.007 (3)
C10A	0.054 (3)	0.083 (4)	0.071 (4)	0.009 (3)	-0.025 (3)	-0.014 (3)
C11A	0.082 (4)	0.064 (4)	0.045 (3)	0.030 (3)	-0.013 (3)	0.000 (3)
C12A	0.079 (4)	0.063 (3)	0.051 (3)	0.017 (3)	-0.005 (3)	-0.010 (3)
C1B	0.075 (4)	0.050 (3)	0.047 (3)	0.019 (3)	-0.010 (3)	-0.011 (2)
C2B	0.053 (3)	0.065 (3)	0.036 (3)	0.021 (3)	-0.004 (2)	-0.009 (2)
C3B	0.057 (3)	0.094 (5)	0.049 (3)	0.028 (3)	-0.003 (3)	-0.008 (3)
C31B	0.059 (4)	0.184 (8)	0.089 (5)	0.020 (5)	0.012 (3)	0.030 (5)

C4B	0.079 (5)	0.126 (6)	0.062 (4)	0.056 (5)	0.001 (3)	-0.008 (4)
C5B	0.108 (6)	0.092 (5)	0.087 (5)	0.060 (5)	-0.007 (4)	-0.018 (4)
C6B	0.094 (5)	0.065 (4)	0.081 (4)	0.032 (3)	-0.007 (4)	-0.016 (3)
C7B	0.078 (4)	0.044 (3)	0.064 (4)	0.008 (3)	-0.011 (3)	-0.012 (3)
C8B	0.061 (4)	0.052 (3)	0.103 (5)	-0.008 (3)	0.006 (3)	0.001 (3)
C9B	0.062 (4)	0.077 (4)	0.097 (5)	-0.004 (3)	0.018 (3)	0.022 (4)
C10B	0.069 (4)	0.075 (4)	0.069 (4)	0.008 (3)	0.025 (3)	0.011 (3)
C11B	0.078 (4)	0.056 (3)	0.049 (3)	0.023 (3)	0.013 (3)	-0.002 (3)
C12B	0.088 (4)	0.063 (3)	0.043 (3)	0.022 (3)	-0.001 (3)	0.005 (3)
В	0.068 (4)	0.066 (5)	0.073 (4)	0.011 (4)	0.007 (3)	-0.005 (4)

Geometric parameters (Å, °)

Fe—OIA	1.887 (3)	С7А—Н7АА	0.9300
Fe—O1B	1.908 (3)	C8A—C9A	1.511 (7)
Fe—N1B	2.166 (4)	C8A—H8AA	0.9700
Fe—N1A	2.172 (4)	С8А—Н8АВ	0.9700
Fe—N2B	2.209 (4)	C9A—C10A	1.504 (7)
Fe—N2A	2.218 (4)	С9А—Н9АА	0.9700
F1—B	1.347 (6)	С9А—Н9АВ	0.9700
F2—B	1.339 (8)	C10A—H10A	0.9700
F3—B	1.261 (7)	C10A—H10B	0.9700
F4—B	1.349 (7)	C11A—C12B	1.522 (7)
F2A—B	1.284 (7)	C11A—H11A	0.9700
F3A—B	1.351 (8)	C11A—H11B	0.9700
F4A—B	1.317 (8)	C12A—C11B	1.514 (7)
O1A—C2A	1.324 (5)	C12A—H12A	0.9700
O3A—C3A	1.357 (6)	C12A—H12B	0.9700
O3A—C31A	1.429 (6)	C1B—C2B	1.388 (7)
O1B—C2B	1.325 (5)	C1B—C6B	1.408 (7)
O3B—C3B	1.365 (7)	C1B—C7B	1.435 (7)
O3B—C31B	1.420 (6)	C2B—C3B	1.409 (7)
N1A—C7A	1.278 (5)	C3B—C4B	1.390 (8)
N1A—C8A	1.466 (5)	C31B—H31A	0.9600
N2A—C11A	1.474 (6)	C31B—H31B	0.9600
N2A—C12A	1.476 (6)	C31B—H31C	0.9600
N2A—C10A	1.484 (6)	C4B—C5B	1.378 (10)
N1B—C7B	1.281 (6)	C4B—H4BA	0.9300
N1B—C8B	1.467 (6)	C5B—C6B	1.363 (9)
N2B—C11B	1.474 (6)	C5B—H5BA	0.9300
N2B—C10B	1.475 (6)	C6B—H6BA	0.9300
N2B—C12B	1.486 (6)	С7В—Н7ВА	0.9300
C1A—C2A	1.402 (6)	C8B—C9B	1.501 (8)
C1A—C6A	1.408 (7)	C8B—H8BA	0.9700
C1A—C7A	1.428 (6)	C8B—H8BB	0.9700
C2A—C3A	1.419 (6)	C9B—C10B	1.517 (8)
C3A—C4A	1.370 (7)	С9В—Н9ВА	0.9700
C31A—H31D	0.9600	С9В—Н9ВВ	0.9700
C31A—H31E	0.9600	C10B—H10C	0.9700

C31A—H31F	0.9600	C10B—H10D	0.9700
C4A—C5A	1.384 (8)	C11B—H11C	0.9700
C4A—H4AA	0.9300	C11B—H11D	0.9700
С5А—С6А	1.337 (7)	C12B—H12C	0.9700
С5А—Н5АА	0.9300	C12B—H12D	0.9700
С6А—Н6АА	0.9300		
O1A—Fe—O1B	127.67 (14)	N2A—C11A—C12B	108.1 (4)
O1A—Fe—N1B	85.93 (14)	N2A—C11A—H11A	110.1
O1B—Fe—N1B	83.57 (14)	C12B—C11A—H11A	110.1
O1A—Fe—N1A	83.83 (13)	N2A—C11A—H11B	110.1
O1B—Fe—N1A	85.37 (14)	C12B—C11A—H11B	110.1
N1B—Fe—N1A	155.69 (14)	H11A—C11A—H11B	108.4
O1A—Fe—N2B	88.88 (14)	N2A—C12A—C11B	107.7 (4)
O1B—Fe—N2B	138.58 (13)	N2A—C12A—H12A	110.2
N1B—Fe—N2B	80.13 (15)	C11B—C12A—H12A	110.2
N1A—Fe—N2B	121.53 (14)	N2A—C12A—H12B	110.2
O1A—Fe—N2A	138.21 (14)	C11B—C12A—H12B	110.2
O1B—Fe—N2A	89.52 (14)	H12A—C12A—H12B	108.5
N1B—Fe—N2A	120.61 (15)	C2B—C1B—C6B	119.7 (6)
N1A—Fe—N2A	80.78 (14)	C2B—C1B—C7B	121.5 (4)
N2B—Fe—N2A	67.37 (15)	C6B—C1B—C7B	118.7 (5)
C2A—O1A—Fe	135.2 (3)	O1B—C2B—C1B	122.9 (5)
C3A—O3A—C31A	116.8 (4)	O1B—C2B—C3B	117.8 (5)
C2B—O1B—Fe	131.5 (3)	C1B—C2B—C3B	119.3 (5)
C3B	118.3 (5)	O3B—C3B—C4B	125.4 (6)
C7A—N1A—C8A	117.0 (4)	O3B—C3B—C2B	114.9 (5)
C7A—N1A—Fe	124.9 (3)	C4B—C3B—C2B	119.7 (6)
C8A—N1A—Fe	118.1 (3)	O3B—C31B—H31A	109.5
C11A—N2A—C12A	108.0 (4)	O3B—C31B—H31B	109.5
C11A—N2A—C10A	110.8 (4)	H31A—C31B—H31B	109.5
C12A—N2A—C10A	111.8 (4)	O3B—C31B—H31C	109.5
C11A—N2A—Fe	100.1 (3)	H31A—C31B—H31C	109.5
C12A—N2A—Fe	106.5 (3)	H31B—C31B—H31C	109.5
C10A—N2A—Fe	118.6 (3)	C5B—C4B—C3B	120.2 (6)
C7B—N1B—C8B	117.8 (4)	C5B—C4B—H4BA	119.9
C7B—N1B—Fe	124.4 (4)	C3B—C4B—H4BA	119.9
C8B—N1B—Fe	117.6 (3)	C6B—C5B—C4B	120.8 (6)
C11B-N2B-C10B	110.1 (4)	C6B—C5B—H5BA	119.6
C11B—N2B—C12B	107.1 (4)	C4B—C5B—H5BA	119.6
C10B—N2B—C12B	112.6 (4)	C5B—C6B—C1B	120.3 (6)
C11B—N2B—Fe	100.6 (3)	C5B—C6B—H6BA	119.9
C10B—N2B—Fe	118.8 (3)	C1B—C6B—H6BA	119.9
C12B—N2B—Fe	106.5 (3)	N1B—C7B—C1B	126.3 (5)
C2A—C1A—C6A	118.7 (4)	N1B—C7B—H7BA	116.9
C2A—C1A—C7A	121.2 (4)	C1B—C7B—H7BA	116.9
C6A—C1A—C7A	120.0 (5)	N1B—C8B—C9B	113.4 (5)
01A—C2A—C1A	122.3 (4)	N1B—C8B—H8BA	108.9
01A—C2A—C3A	118.8 (4)	C9B—C8B—H8BA	108.9
C1A—C2A—C3A	118.9 (4)	N1B—C8B—H8BB	108.9

O3A—C3A—C4A	125.6 (5)	C9B—C8B—H8BB	108.9
O3A—C3A—C2A	114.6 (4)	H8BA—C8B—H8BB	107.7
C4A—C3A—C2A	119.8 (5)	C8B—C9B—C10B	115.3 (5)
O3A—C31A—H31D	109.5	C8B—C9B—H9BA	108.5
O3A—C31A—H31E	109.5	С10В—С9В—Н9ВА	108.5
H31D—C31A—H31E	109.5	C8B—C9B—H9BB	108.5
O3A—C31A—H31F	109.5	C10B—C9B—H9BB	108.5
H31D—C31A—H31F	109.5	Н9ВА—С9В—Н9ВВ	107.5
H31E—C31A—H31F	109.5	N2B-C10B-C9B	114.6 (4)
C3A—C4A—C5A	120.5 (5)	N2B-C10B-H10C	108.6
СЗА—С4А—Н4АА	119.8	C9B—C10B—H10C	108.6
С5А—С4А—Н4АА	119.8	N2B-C10B-H10D	108.6
C6A—C5A—C4A	120.8 (5)	C9B—C10B—H10D	108.6
С6А—С5А—Н5АА	119.6	H10C—C10B—H10D	107.6
С4А—С5А—Н5АА	119.6	N2B-C11B-C12A	108.6 (4)
C5A-C6A-C1A	121.3 (6)	N2B—C11B—H11C	110.0
С5А—С6А—Н6АА	119.3	C12A—C11B—H11C	110.0
С1А—С6А—Н6АА	119.3	N2B—C11B—H11D	110.0
N1A—C7A—C1A	127.5 (4)	C12A—C11B—H11D	110.0
N1A—C7A—H7AA	116.2	H11C—C11B—H11D	108.3
С1А—С7А—Н7АА	116.2	N2B—C12B—C11A	107.6 (4)
N1A-C8A-C9A	112.8 (4)	N2B—C12B—H12C	110.2
N1A—C8A—H8AA	109.0	C11A—C12B—H12C	110.2
С9А—С8А—Н8АА	109.0	N2B—C12B—H12D	110.2
N1A—C8A—H8AB	109.0	C11A—C12B—H12D	110.2
С9А—С8А—Н8АВ	109.0	H12C—C12B—H12D	108.5
Н8АА—С8А—Н8АВ	107.8	F2A—B—F4A	111.9 (8)
C10A—C9A—C8A	115.1 (4)	F3—B—F2	113.1 (7)
С10А—С9А—Н9АА	108.5	F3—B—F1	117.3 (6)
С8А—С9А—Н9АА	108.5	F2A—B—F1	117.8 (6)
С10А—С9А—Н9АВ	108.5	F4A—B—F1	106.9 (7)
С8А—С9А—Н9АВ	108.5	F2—B—F1	107.9 (6)
Н9АА—С9А—Н9АВ	107.5	F3—B—F4	109.4 (7)
N2A-C10A-C9A	114.5 (4)	F2—B—F4	105.1 (7)
N2A—C10A—H10A	108.6	F1—B—F4	102.9 (6)
C9A-C10A-H10A	108.6	F2A—B—F3A	109.1 (7)
N2A-C10A-H10B	108.6	F4A—B—F3A	105.0 (7)
C9A—C10A—H10B	108.6	F1—B—F3A	105.2 (6)
H10A—C10A—H10B	107.6		
O1B—Fe—O1A—C2A	105.8 (4)	C31A—O3A—C3A—C4A	7.7 (8)
N1B—Fe—O1A—C2A	-175.6 (4)	C31A—O3A—C3A—C2A	-172.5 (5)
N1A—Fe—O1A—C2A	26.5 (4)	O1A—C2A—C3A—O3A	-2.5 (7)
N2B—Fe—O1A—C2A	-95.4 (4)	C1A—C2A—C3A—O3A	178.0 (4)
N2A—Fe—O1A—C2A	-42.2 (5)	O1A—C2A—C3A—C4A	177.4 (5)
O1A—Fe—O1B—C2B	115.0 (4)	C1A—C2A—C3A—C4A	-2.2 (7)
N1B—Fe—O1B—C2B	35.3 (4)	O3A—C3A—C4A—C5A	-179.9 (5)
N1A—Fe—O1B—C2B	-166.4 (4)	C2A—C3A—C4A—C5A	0.2 (9)
N2B—Fe—O1B—C2B	-31.9 (5)	C3A—C4A—C5A—C6A	0.9 (10)
N2A—Fe—O1B—C2B	-85.6 (4)	C4A—C5A—C6A—C1A	-0.1 (10)

O1A—Fe—N1A—C7A	-16.0 (4)	C2A—C1A—C6A—C5A	-1.8 (8)
O1B—Fe—N1A—C7A	-144.7 (4)	C7A—C1A—C6A—C5A	-178.3 (5)
N1B—Fe—N1A—C7A	-81.6 (5)	C8A—N1A—C7A—C1A	-176.2 (5)
N2B—Fe—N1A—C7A	68.9 (4)	Fe—N1A—C7A—C1A	4.6 (7)
N2A—Fe—N1A—C7A	125.0 (4)	C2A—C1A—C7A—N1A	7.4 (8)
O1A—Fe—N1A—C8A	164.8 (3)	C6A—C1A—C7A—N1A	-176.2 (5)
O1B—Fe—N1A—C8A	36.1 (3)	C7A—N1A—C8A—C9A	-110.1 (5)
N1B—Fe—N1A—C8A	99.2 (5)	Fe—N1A—C8A—C9A	69.2 (5)
N2B—Fe—N1A—C8A	-110.3 (3)	N1A-C8A-C9A-C10A	-62.7 (6)
N2A—Fe—N1A—C8A	-54.2 (3)	C11A—N2A—C10A—C9A	-176.4 (4)
O1A—Fe—N2A—C11A	-119.4 (3)	C12A—N2A—C10A—C9A	63.1 (6)
O1B—Fe—N2A—C11A	85.3 (3)	Fe—N2A—C10A—C9A	-61.5 (5)
N1B—Fe—N2A—C11A	3.1 (3)	C8A—C9A—C10A—N2A	59.4 (7)
N1A—Fe—N2A—C11A	170.7 (3)	C12A—N2A—C11A—C12B	-53.5 (5)
N2B—Fe—N2A—C11A	-59.3 (3)	C10A—N2A—C11A—C12B	-176.2 (4)
O1A—Fe—N2A—C12A	-7.0 (4)	Fe—N2A—C11A—C12B	57.7 (4)
O1B—Fe—N2A—C12A	-162.3 (3)	C11A—N2A—C12A—C11B	70.4 (5)
N1B—Fe—N2A—C12A	115.5 (3)	C10A—N2A—C12A—C11B	-167.5 (4)
N1A—Fe—N2A—C12A	-76.9 (3)	Fe—N2A—C12A—C11B	-36.4 (4)
N2B—Fe—N2A—C12A	53.1 (3)	Fe-O1B-C2B-C1B	-29.8 (6)
O1A—Fe—N2A—C10A	120.0 (3)	Fe—O1B—C2B—C3B	151.8 (3)
O1B—Fe—N2A—C10A	-35.2 (3)	C6B-C1B-C2B-O1B	-179.0 (4)
N1B—Fe—N2A—C10A	-117.4 (3)	C7B-C1B-C2B-O1B	-2.5 (7)
N1A—Fe—N2A—C10A	50.2 (3)	C6B-C1B-C2B-C3B	-0.6 (7)
N2B—Fe—N2A—C10A	-179.8 (4)	C7B—C1B—C2B—C3B	175.9 (5)
O1A—Fe—N1B—C7B	-151.1 (4)	C31B—O3B—C3B—C4B	3.4 (8)
O1B—Fe—N1B—C7B	-22.4 (4)	C31B—O3B—C3B—C2B	-176.5 (5)
N1A—Fe—N1B—C7B	-85.9 (5)	O1B—C2B—C3B—O3B	-0.2 (7)
N2B—Fe—N1B—C7B	119.4 (4)	C1B—C2B—C3B—O3B	-178.7 (4)
N2A—Fe—N1B—C7B	63.2 (4)	O1B—C2B—C3B—C4B	179.9 (4)
O1A—Fe—N1B—C8B	33.7 (4)	C1B—C2B—C3B—C4B	1.4 (7)
O1B—Fe—N1B—C8B	162.4 (4)	O3B—C3B—C4B—C5B	179.6 (6)
N1A—Fe—N1B—C8B	98.9 (5)	C2B—C3B—C4B—C5B	-0.6 (9)
N2B—Fe—N1B—C8B	-55.8 (4)	C3B—C4B—C5B—C6B	-1.2 (10)
N2A—Fe—N1B—C8B	-112.0 (4)	C4B—C5B—C6B—C1B	2.1 (10)
O1A—Fe—N2B—C11B	86.3 (3)	C2B—C1B—C6B—C5B	-1.2 (8)
O1B—Fe—N2B—C11B	-119.3 (3)	C7B—C1B—C6B—C5B	-177.8 (5)
N1B—Fe—N2B—C11B	172.4 (3)	C8B—N1B—C7B—C1B	-179.2 (5)
N1A—Fe—N2B—C11B	4.3 (3)	Fe—N1B—C7B—C1B	5.7 (7)
N2A—Fe—N2B—C11B	-58.4 (3)	C2B—C1B—C7B—N1B	12.4 (8)
O1A—Fe—N2B—C10B	-33.8 (3)	C6B—C1B—C7B—N1B	-171.1 (5)
O1B—Fe—N2B—C10B	120.6 (3)	C7B—N1B—C8B—C9B	-105.6 (5)
N1B—Fe—N2B—C10B	52.3 (3)	Fe—N1B—C8B—C9B	69.9 (5)
N1A—Fe—N2B—C10B	-115.8 (3)	N1B-C8B-C9B-C10B	-60.6 (7)
N2A—Fe—N2B—C10B	-178.5 (4)	C11B—N2B—C10B—C9B	-176.9 (4)
O1A—Fe—N2B—C12B	-162.1 (3)	C12B—N2B—C10B—C9B	63.6 (6)
O1B—Fe—N2B—C12B	-7.7 (4)	Fe—N2B—C10B—C9B	-61.7 (5)
N1B—Fe—N2B—C12B	-76.0 (3)	C8B—C9B—C10B—N2B	56.9 (7)
N1A—Fe—N2B—C12B	115.9 (3)	C10B—N2B—C11B—C12A	-177.0 (4)

N2A—Fe—N2B—C12B	53.2 (3)	C12B—N2B—C11B—C12A	-54.2 (5)
Fe-O1A-C2A-C1A	-23.4 (7)	Fe—N2B—C11B—C12A	56.9 (4)
Fe-O1A-C2A-C3A	157.1 (3)	N2A—C12A—C11B—N2B	-13.5 (5)
C6A—C1A—C2A—O1A	-176.6 (4)	C11B-N2B-C12B-C11A	70.9 (5)
C7A—C1A—C2A—O1A	-0.2 (7)	C10B-N2B-C12B-C11A	-168.0 (4)
C6A—C1A—C2A—C3A	2.9 (7)	Fe—N2B—C12B—C11A	-36.1 (5)
C7A—C1A—C2A—C3A	179.4 (4)	N2A—C11A—C12B—N2B	-14.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C9A—H9AA…F4 ⁱ	0.97	2.51	3.464 (14)	170
C9A—H9AA····F2A ⁱ	0.97	2.54	3.442 (14)	155
C12A—H12B····F4 ⁱ	0.97	2.46	3.275 (11)	141
C12A—H12B…F2A ⁱ	0.97	2.30	3.252 (10)	166
C12B—H12D…F3 ⁱⁱ	0.97	2.35	3.279 (8)	160
C9B—H9BB…F3A ⁱⁱ	0.97	2.21	3.119 (9)	155
Symmetry codes: (i) - <i>x</i> +1, - <i>y</i> , - <i>z</i> +1; (ii) - <i>x</i> +1,	-y+1, -z+1.			

sup-10

Fig. 2

